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The impulsively starting motion of a circular cylinder submerged horizontally below a 
free surface is studied analytically using a small-time expansion. The series expansion 
is taken as far as necessary to include the leading gravitational effects for two cases: 
constant velocity and constant acceleration, both commencing from rest. The 
hydrodynamic force on the cylinder and the surface elevation are calculated and 
expressed in terms of bipolar coordinates. Comparisons are also made with earlier 
theoretical and experimental work. The theory is valid for arbitrary value of 
submergence depth to cylinder radius. 

1. Introduction 
The interaction of a circular cylinder with a free surface is a well-established subject 

in hydrodynamics. The first paper was written by Dean (1948) on linear wave 
diffraction due to a restrained cylinder. Dean’s results were confirmed by Ursell(1950), 
who also studied the corresponding radiation problem. At the same time, Havelock 
(1949a, b) introduced the type of problem that we are proposing to study here: the 
transient free-surface response due to a cylinder that is suddenly set into forced motion 
at time zero. 

The early papers by Havelock (1949a, b) treated the impulsively starting motion of 
a cylinder, with constant velocity and constant acceleration, respectively. Based on 
linear theory, the full free-surface time evolution was studied. Havelock’s work was 
extended into the nonlinear regime by Tuck (1965). In the present paper we will carry 
further the analytical approach to this problem. However, in contrast to these early 
papers, we are not interested here in the long-time evolution predicted by linear theory, 
but in the short-time successive triggering of nonlinear effects. These can be studied in 
terms of a small-time expansion of the full nonlinear initial/boundary value problem 
(e.g. Peregrine 1972; Greenhow & Lin 1983; Vinje 1994). 

The full initial/boundary value problem for an impulsively started submerged 
cylinder in an inviscid fluid has been studied by Haussling & Coleman (1979), Telste 
(1987), Greenhow (1988, 1993) and Terent’ev (1991). Ananthakrishnan & Yeung 
(1994) have recently studied the start of an oscillatory motion, both for viscous and 
inviscid flow. However, all these results are solely numerical, and cannot give accurate 
predictions of the forces at small times. Small-time expansions for the slamming force 
acting on a rigid sphere, during both vertical and oblique water-entries, have been 
calculated by Miloh (1991 a, b). Greenhow & Lin (1983) have investigated the present 
problem experimentally, but for vertical motion only. In the present paper the initial 
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velocity is allowed to make an arbitrary oblique angle with the undisturbed free 
surface. We take into account the leading-order effects of gravity (arbitrary Froude 
number), and the ratio of the cylinder radius to the submergence depth is also 
arbitrary. The small-cylinder limit of the present problem is investigated in an 
accompanying paper (Tyvand & Miloh 1995). 

In this paper we put emphasis on a consistent treatment of the important geometric 
nonlinearity due to the fact that the cylinder is displaced away from its initial position, 
at any finite time since its start. This geometric nonlinearity has recently been 
investigated by Wu (1993), in the context of the radiation problem for a submerged 
circular cylinder with a linearized free-surface condition. 

2. General mathematical problem 
We consider a solid circular cylinder of radius '% submerged in an inviscid fluid of 

infinite depth. At negative times ( t  < 0) everything is at rest, and the cylinder centre is 
located at a distance D below the free surface of the fluid. Cartesian coordinates x and 
y are introduced. The gravitational acceleration is denoted by g,  and the y-axis is 
directed upwards. The x-axis lies at the undisturbed free surface (see figure 1). The 
surface elevation is denoted by 7 = ~(x, t).  We introduce a unit velocity W, which will 
be specified later. The unit of length is the initial submergence depth D.  The important 
dimensionless parameter in the present formulation is the Froude number defined by 

W Fr = ~ 

(gD)"2' 

We also introduce units of dimensionless time D /  W and pressure p W 2 ,  where p is the 
fluid density. The dimensionless cylinder radius is chosen as 

E = '%ID. (2.2) 
The primary choice for W is the initial velocity, but in order to avoid exclusion of an 
important special case, we leave this definition open for the time being. 

The forced motion starts impulsively from rest at time zero. According to Kelvin's 
circulation theorem (Batchelor 1967, p. 273), the flow is irrotational. The continuity 
equation for an incompressible fluid then implies that the fluid motion is governed by 
Laplace's equation, 

where @(x, y, t )  is the dimensionless velocity potential. The dimensionless boundary 
conditions are 

V2@ = 0, (2.3) 

IVcpI+O, x2+y2+a3, (2.4) 

(Y-R)-(v@-A) = 0, Ir-RI = E .  (2.7) 
The dot superscript denotes time differentiation. We have introduced here the 
following notation for the position vector of a fluid particle: 

r = xi+ yj, (2.8) 
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FIGURE 1. Definition sketch of the moving cylinder and free surface. 

where i a n d j  are unit vectors in the x- and y-directions, respectively. In (2.7) the 
position of the cylinder centre is written as 

(2 * 9) 

This position is prescribed by the forced motion of the cylinder. The exact boundary 
condition at the cylinder (2.7) will be expanded in time in the following section. 
Recently Wu (1993) has incorporated this exact condition into the wave radiation 
problem for an oscillating circular cylinder, but in contrast to the present work, the 
free-surface conditions were linearized. Our initial conditions are chosen as 

R(t) = X(t )  i+ Y(t)j.  

(2.10) 

(2.11) 

These conditions imply that the free surface is initially undisturbed, and that the 
motion is started impulsively during an infinitesimal time interval. Since all velocities 
are finite during the impulsive start, (2.10) and (2.11) arise from integrating (2.5) and 
(2.6) over the infinitesimal time interval of the impulsive start. 

We choose pW2 as a reference pressure. The pressure (p) is given by Bernoulli's 
equation, which has a form consistent with the dynamic boundary condition (2.6) : 

(2.12) 

In accordance with our previous choices of dimensionless quantities, the units of 
dimensionless mass, force and momentum (per length along the cylinder) are given by 
(pD2), (pDW2) and (pD2W), respectively. The physical meaning of the latter is the 
momentum of a unit-square cylinder of fluid moving with the unit velocity. This is not 
to be confused with the scale for the added momentum at the initial instant: the 
appropriate scale is the momentum of a fluid mass displaced by the cylinder, when it 
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moves with the initial velocity. The dimensionless value of this momentum scale is 
(m2), being the same as the added momentum of a cylinder in infinite fluid. 

3. The small-time expansion 
Our full nonlinear initial/boundary value problem consists of (2.3t(2.7), and 

(2.10)-(2.11). These equations are solved analytically by employing a small-time 
expansion (e.g. Peregrine 1972; Greenhow & Lin 1983). We then postulate 

(@, 11, R )  = (O,O, Ro) + H(t) “Go, 070) 
+ t(G1, rl, Rl) + t2(@,, y2, R2)  + . . .] (- 00 < t < .o). (3.1) 

We prefer to write this equation in a form common for all times, negative as well as 
positive. Therefore the Heaviside unit step function H(t) has been introduced : 

H(t) = 0, t d 0 and H(t) = 1, t > 0. ( 3 4  

The asymptotic series (3.1) will diverge for times exceeding some value of order 1 : our 
expansion aims to extrapolate the whole solution from the initial locations of the 
cylinder and free surface, but such a procedure cannot be valid when the cylinder is 
displaced further than its own initial submergence depth. In (3.1) @, and 7% are 
unknown functions, whereas the instantaneous position vector of the cylinder centre is 
prescribed by its forced motion: 

R ,  = iXn+jY, (n = 0, l,2, ...), (3.3) 

where we have already defined 
V O ,  r,) = (0, - 1). (3.4) 

From the series expansion of the velocity potential it follows immediately that the 
governing equations are 

V2@, = 0, y < 0, x2+0.’+ 1)2 > €2, (3.5) 

expressing the potential flow to each order in the initial fluid domain. The 
corresponding far-field conditions are 

lV@nl+O, x2+y2+ co (n = 0, l,2, ...). (3.6) 
The operator of total time differentiation at the moving free surface is 

(&) =-+--. a ar a 
surface at a t a ~  

(3.7) 

The free-surface conditions to each order are found from (2.5) and (2.6) by applying 
the operator (3.7) recursively and putting t = 0 in the resulting small-time expansions 
(see e.g. Tyvand 1991). The resulting dynamic conditions are given below: 

@ , = O ,  y = o ,  

1 2111, Y = 0, 
Q2 = - Y1(2T2 +iFr-2), y = 0. 

@ = - I  2 

(3 * 8) 

(3.9) 
(3.10) 

So far, we have stated the general dynamic conditions. But for the third-order potential 
we give only the version valid for constant acceleration from rest: 

@, = -+y2(4r2 + Fr-2), y = 0. (3.1 1) 
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FIGURE 2. Initial position of the cylinder. Dimensionless lengths and polar coordinates (R, 0). 
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The corresponding kinematic conditions are 

I f  
It 

71 = a@j0/ayy, y = 0, (3.12) 

2% = a@j,/ayY, y = 0, (3.13) 

(3.14) 

4r4 = a@j3/ayy, y = 0. (3.15) 

These kinematic conditions are also general, except for the last one, which is only valid 
for the case of constant acceleration. The general versions of conditions (3.11) and 
(3.15) are considerably more complicated, and contain many terms representing 
interactions between the first-, second- and third-order elevations. 

In (3.14) the prime denotes (dldx). We carry our perturbation scheme this far 
because we want to include the leading-order gravitational effects in the case of 
constant acceleration from rest. All free-surface boundary conditions, i.e. (3.8)-(3.15), 
have been written concisely by introducing lower-order surface elevations wherever 
possible. We perform a simultaneous extrapolation of both the free surface and the 
cylinder location out from their initial positions. We introduce polar coordinates 
(R, 0) with origin in the initial cylinder centre (0, - 1): 

(x, y + 1) = R (sin 0, cos 0). (3.16) 

Thus we let 0 measure the clockwise angle out from the vertical y-axis (- 7c d 0 < IT). 
See figure 2. This unconventional definition of polar coordinates has been chosen in 
order to correspond to the bipolar coordinates which will be introduced in the next 
section. In figure 2 we also introduce the angle 01 between the initial velocity vector and 
the x-axis. 
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Our task is now to expand the exact boundary condition (2.7) at the cylinder contour 
in powers of t. This is done by successively applying the operator of total time 
differentiation following the cylinder in its motion : 

(3.17) 

After each application of this operator, we insert the series (3.1) for @, and then set 
f = 0. We introduce the radial unit vector, which is evaluated at the initial cylinder 
contour : 

i, = isinO+jcosO. (3.18) 

(-$) = - + R . v .  a 
cy l inder  

The zeroth-order condition may then be written 

a@,/aR = R, .  iR, R = E .  (3.19) 

We also give the full first- and second-order conditions: 

a@,/aR = 2R, - i  R-iR.V(R1-V@o), R = E ,  (3.20) 

2 w 2  
~ = 3R,.iR-2iR.V(R2.V@,) 
aR 

- 2iR. V(R, -V@,) - iR.V(R1 V(R,. V@,)), R = c. (3.21 a) 

One notes that the right-hand-side inhomogeneities of these boundary conditions do 
not contain any explicit Froude number dependence. This implies that the leading- 
order gravity-dependent potential will satisfy the condition of zero normal derivative 
at the cylinder contour. When the cylinder moves with a constant velocity we thus get 

d@!jFr)/2R = 0, R = c (3.21 b) 

as a special case of the previous condition. Here we have introduced the superscript 
(Fr) to denote the gravity-dependent contribution. In our second special case of a 
constant acceleration (starting from rest; see Q lo), the full third-order condition at the 
cylinder contour becomes rather simple : 

a@,/aR = -iiR.V(R2-V@1), R = C. (3.22) 

Within each order of the series expansion, the principle of superposition is valid. 
Therefore we may split the potential into two contributions at each order, i.e. 

Qn = q 5 n + @ n  (n  = 0,1 ,2 ,  ...). (3.23) 

The first term (4,) is generated by the inhomogeneous condition at the free surface with 
zero normal derivative at the cylinder contour. The second term ($.,) is generated by 
the inhomogeneous boundary condition at the cylinder contour, with a homogeneous 
condition at the free surface. The small-cylinder theory of our accompanying paper 
(Tyvand & Miloh 1995, equation 4.2) represents @a as a moving-dipole potential: it is 
prescribed explicitly, and has been used to check the validity of our present first-order 
condition (3.20) at the cylinder contour. 

Expressed in terms of the polar coordinates, we represent the dimensionless integral 
for the force exerted on the cylinder by the surrounding fluid as 

F = - c  p (c ,O) iRdO.  1, (3.24) 
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From Bernoulli’s equation (2.12)’ the above pressure integral produces a small-time 
expansion for the hydrodynamic force with an extra singular term: 

F = F-, &(t) + (F, + Fl t + F, t2 + . . .) H(t). (3.25) 

Here &(t) is Dirac’s delta function, which is the derivative of the Heaviside unit step 
function H(t). By integrating the force in time, we find the force-impulse exerted on the 
cylinder during its impulsive start : 

AP = @: Fdt  = El. (3.26) 

Its magnitude is equal to the added momentum accumulated around the cylinder 
during the infinitesimal time interval of an impulsive start. The constant hydrostatic 
force, 

I i s ta t ic  = wwx (3.27) 

is omitted in our force calculations, since, unlike the other contributions, it is not turned 
on at time zero. 

The principle of mass conservation implies that the integral of the surface elevation 
must be zero to each order: 

q,dx=O (n=1 ,2  ,... ). L (3.28) 

4. Bipolar coordinates 
We will solve the exact boundary value problem to each order by means of bipolar 

coordinates. The bipolar coordinate system is described in the books by Morse & 
Feshbach (1953, p. 1210) and Moon & Spencer (1988, p. 89). Figure 3 gives a sketch of 
our domain of computation as represented by the bipolar coordinates < and 0. All 
quantities are made dimensionless. 

An attractive feature of the bipolar coordinate system is that Laplace’s equation 
separates into 

The transformation between the Cartesian and the bipolar coordinate system (<,O)  is 
given by 

a sin 0 
cosh 6+ cos 0 ’ X =  

a sinh < 
cosh <+ cos 0 * 

y = -  (4.3) 

The scale factors of the transformation from Cartesian to bipolar coordinates are 
(being the square root of the Jacobian) 

a 
h - h  - 

5 -  ’-cosh<+cosO’ 

Our domain of computation is the undisturbed fluid domain defined by 

(4.4) 
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e = o  

e=+n: I- 
FIGURE 3. Definition sketch for bipolar coordinates (<, 6). 

Here a is a dimensionless length, representing the centres (x, y )  = (0, f a )  of the bipolar 
coordinate system. It is related to the radius through 

(44 a = (1 - e2)lI2. 

One can also express the cylinder radius, using these new parameters, as 

a 
sinh co e = - = (cosh c0)-l = sech 3,. (4.7) 

It is natural to first specify a value for e. The corresponding values for 5, and a are given 
by 

c0 = arcsech e, a = tanh c,. (4.8) 

In the boundary-value problems we will perform transformations from 0 to 19 at the 
cylinder contour. So we derive two equations for the one-to-one transformation 
between 0 and 6': 

sinh c,, sin 6' 
cosh co + cos 8 ' 

1 + cosh 5, cos 6' 
cosh 5, + cos 6' ' 

sin 0 = coso  = (4.9a, b) 

By differentiating the first of these relationships, we find a relationship between the 
differentials at the cylinder contour: 

sinhc, - sin 0 -- - dO 
d6' cosh co + cos 6' sin 6' ' 

-- (4.10) 

This also means that tan (to) is proportional to tan (46'). Equations (4.9) and (4.10) are 
valid only along the cylinder contour. 



Free-surface $ow due to a submerged cylinder 75 

5. The zeroth-order potential and first-order elevation 

expressed in bipolar coordinates as 
The inhomogeneous boundary condition (3.19) for the zeroth-order potential is 

where a is defined as the angle between the initial velocity vector and the x-axis: 

X ,  = cosa, = sina. ( 5 4  
In order to find the zeroth-order flow, we need to eliminate 0 from the boundary 
condition. 

Next, we insert (4.9) into the boundary condition (5.1): 

a @ O  sinh c0 sin 8 cos a + (1 + cosh co cos 8) sin a 
(cosh co + cos O)z  -(Co, 8) = - a  ac (5.3) 

In Appendix A the Fourier expansion of this boundary condition is derived. The 
solution satisfying the homogeneous free-surface condition (3.7) and the far-field 
condition (3.5) is then given by 

Oo (- 1)” e-nco sin (no  + a) sinh nc  
n=l cosh nco 

Q0 = 2 tanh co C 

The first-order elevation (3.12) is expressed in bipolar coordinates as 

(5.4) 

1 w0 
Tl = - - - ( O , O )  

h, ac 
m 

= 4 cos2 ($3) C. (- e-nco sech nco sin (n6+ a). (5.5) 

A comparison of the exact first-order elevation (5.5) with the small-cylinder limit is 
given by Tyvand & Miloh (1995). In the present paper we display the first-order 
elevation as a function of the horizontal coordinate x. Using the definitions of the 
bipolar coordinate system we obtain the following transformation to be inserted into 
(5.5) : 

n=l 

In figure 4 we show the first-order surface elevation as a function of x for three 
dimensionless radii: E = 0.5, 0.8 and 0.98. Figure 4(a)  represents vertical motion 
(a = f.), and figure 4(b)  represents horizontal motion (a = 0). This figure is based on 
the exact analytical solution (5.5), truncated to 40 terms in the Fourier series by 
MATHEMATICA~. We do not present here a figure for oblique motion, since its elevation 
is obtained by superposing the horizontal and vertical motion. 

For our higher-order analysis it proves useful to rewrite the first-order elevation in 
the form 

(5.7) 
a, sin [(n - 1) 8+ a] + 2 sin (no+ a) + sin [(n + 1) 8+a] 7 - C (- 1)nflne-nCo 

1 -  cosh nco n=l 

For vertical initial motion (a = $K) it is clear that the free-surface velocity in a 
neighbourhood around x = 0 (8 = 0) must be slightly below 1 when e is close to 1 : then 
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771 

X 

FIGURE 4. First-order surface elevation for three choices of dimensionless radius: E = 0.5 (dash-dot 
curves, smallest amplitude), E = 0.8 (dashed curves, medium amplitude), E = 0.98 (solid curves, 
largest amplitude). (a) Vertical motion (a  = in). (6) Horizontal motion (a = 0). 

there is a shallow fluid layer that moves upwards with the cylinder. The early 
horizontal flow in this shallow layer must be comparatively weak. Our results confirm 
that the surface shape is relatively flat around x = 0 when e is close to 1. In the small- 
cylinder limit (Tyvand & Miloh 1995) the first-order elevation changes sign at 1x1 = 1. 
The point of zero elevation shifts slowly towards larger 1x1 when E increases. 

It is not so obvious how the free surface will behave when the initial motion is 
horizontal (a = 0), apart from the fact that the first-order elevation must be 
antisymmetric with respect to x = 0. Our results show that the maximum surface 
elevation will be of order 1 when e approaches 1, which is physically plausible. The 
position of this maximum shifts slowly to larger x with increasing E .  

For vertical cylinder motion the largest slope of the free surface occurs for a value 
of x about 0.7, in the limit E +  1. The larger the cylinder, the steeper the maximum 
slope. For a cylinder in horizontal motion the maximum slope of the first-order 
elevation will always occur at x = 0. However, this maximum slope is not steepest in 
the limit e+ 1, as with slightly smaller cylinders: here, the steepest slope occurs when 
e is roughly equal to 0.8. This indicates that there exists an optimal cylinder size for 
generating breaking waves. With the impulsive start of a cylinder in steady horizontal 
motion, there should be a minimum Froude number that will lead to surface breaking. 
Our results so far indicate that this minimum Froude number will correspond to a 
cylinder radius E which is significantly smaller than one. 
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6. The added momentum during the impulsive start 
From 902 and 3 it follows that the dimensionless added momentum (or impulse) 

acquired by the cylinder during the impulsive start is given (in polar coordinates) by 

F-, = e ln Q0(e, 0) iR d0 .  

Rewriting this integral in bipolar coordinates with Cartesian unit vectors yields 

- i( 1 + cosh co cos 0) + j  sinh c0 sin 0 
cosh co + cos 0 

m 

= 2 tanh2 c0 C (- 1)" eC5o tanh nCo 
n = l  

(6.2) 
(sinh co sin0) i +  (1 + cosh co cos O)jdO. 

(cosh Q + cos 0)2 
x In sin (no + a> 

In order to be able to evaluate this last integral, we first apply the Fourier expansions 
(A 2) and (A 3), where the summation index is now m. However, the only 
contributions to this force arise from m = n. Thus the final result is 

m 

F-, = - 47c R, tanh2 5, n e-znco tanh nc0. (6.3) 
n = l  

By virtue of (5.2) we have introduced here the initial velocity 

R ,  = icosa+jsina. (6.4) 

The force impulse (6.3) represents the added momentum of the fluid surrounding the 
cylinder. It can also be expressed as the initial velocity times the (initial) added mass. 
Since this force always points in the direction opposite to the initial velocity, the added 
masses for heave and sway are identical, with the zero-potential condition applied at 
the free surface. This conclusion is in agreement with the linear analysis of Ogilvie 
(1963), who proved that added masses for heave and sway are always identical for 
submerged circular cylinders oscillating at any frequency. Our zero-potential condition 
at zeroth order coincides with the infinite-frequency limit of linear theory. 

Greenhow & Li (1987) derived a general formula for the added mass of a circular 
cylinder near a free surface in the zero-potential limit. In their figure 2 they depicted 
the ratio (added mass)/(displaced fluid mass) as a function of the inverse radius e-l 
(using our notation). This is reproduced again in our figure 5 ,  showing the added mass 
relative to the displaced mass, 

00 

IF-,l/(m2) = 4 sinh' co C n e-2nc0 tanh nc0, (6.5) 
n=l  

as a function of e-l = coshco. The summation is truncated after 50 terms. Our curve 
is in good agreement with that of Greenhow & Li (1987, figure 2). Similar results were 
found by Venkatesan (1985): his figure 1 represents the added mass of each of two 
equal cylinders performing transverse relative motion. (This is physically equivalent to 
the added mass of one submerged cylinder subject to the zero-potential free-surface 
condition.) 
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FIGURE 5. Added momentum during the impulsive start, expressed by the ratio of added mass to 
displaced fluid mass (m2), and given as a function of the inverse radius. Solid curve: exact Fourier 
series solution (6.5), truncated to 50 terms. Dashed curve: three-term asymptotic expansion (6.6), 
valid in the small-cylinder limit. 

Tyvand & Miloh (1995) derives the asymptotic expansion valid for small c :  

lF-11/(7C€2) = 1 -;€2+;€4. (6.6) 

The graphical representation of (6.6) follows very closely the exact curve (6.5) for all 
c1 > 1.5, and is included in our figure 5 (dashed curve). 

7. The first-order potential and second-order elevation 
The potential q51 is the leading-order contribution due to the nonlinearity at the free 

surface. It is calculated in Appendix B, from which we find that its contribution to the 
second-order surface elevation is 

2 1 

x C (24-9k2+k4) C. g(n+qm+k)cos((n+gm+k)O+(q+ 1)a) 
k=-2 q=-1 

x tanh (n + qm + k)  co. (7.1) 

Figure 6 shows this second-order elevation due to the free-surface nonlinearity, given 
by (7.1), for the same three values of the radius as in figure 4. Figure 6(a)  shows the 
elevation for vertical motion, and figure 6(b) shows the elevation for horizontal 
motion. Both of these curves are symmetric with respect to x = 0. However, no values 
of a between 0 and gives any symmetry with respect to x = 0. Owing to nonlinear 
interaction (in this second-order elevation) between horizontal and vertical cylinder 
motion, these asymmetric surface shapes cannot be deduced from those of purely 
horizontal or vertical motion. 
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FIGURE 6. Second-order surface elevation due to convective acceleration at the free surface; 
v p )  (x) = #3q51/C)y)y-o. The exact Fourier series solution (7.1) has been truncated after 20 terms in 
both n and m. Dash-dot curves: E = 0.5. Dashed curves: E = 0.8. Solid curves: E = 0.98. (a) Vertical 
motion (a = in). (b )  Horizontal motion (a = 0). (c) Oblique motion (a  = in). 
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FIGURE 7. Second-order surface elevation due to geometric nonlinearity; y p m )  (x) = 
The exact Fourier series solution (7.3) has been truncated after 20 terms in both n and m. Dash-dot 
curves: B = 0.5. Dashed curves: e = 0.8. Solid curves: 6 = 0.98. (a) Vertical motion (a = in). (b)  
Horizontal motion (a = 0). (c) Oblique motion (a  = 471). 



Free-surface pow due to a submerged cylinder 81 

Figure 6 (c)  shows the second-order elevation due to the free-surface nonlinearity for 
the case a = in (oblique motion). When the motion is oblique, there is never exact 
antisymmetry about x = 0, even in the small-cylinder limit. In the present case (a = in) 
the deepest surface trough is always deeper than the highest surface crest. 

The potential $l is the leading-order contribution due to geometric nonlinearity at 
the cylinder contour. It is calculated in Appendix B. Its contribution to the second- 
order surface elevation may be expressed concisely by a mixture of Cartesian and 
biharmonic coordinates : 

The function &1 is defined in (B9). We insert (5.4)-(5.7) and find a Fourier series 
solution for the second-order elevation due to geometric nonlinearity : 

x ( (n -  1) sin((n- 1) 0+a) tanh ( n -  1) cO+2n sin (ne+a) tanhnco 

+ (n + 1) sin ( (n  + 1) 0+a) tanh (n + 1) co) 
2cosa * - (- 1)" n e-"<o sech nco 

tanh co + x2 

x [sin 0 sin (no + a) - 2n cos2 (i0) cos (no + a)]. (7.3) 

In the last fraction we may replace x2 by [tanh2 co tan2(f0)], to obtain an expression with 
bipolar coordinates alone. 

We first note that the second-order elevation for a given cylinder is unchanged when 
its direction of motion is reversed (i.e. the angle a in (7.1) and (7.3) is replaced by -a). 
This implies that an asymmetry between upward and downward motion will evolve 
after a finite time : the surface mound above a given cylinder in upward motion grows 
larger than the depth of the surface trough above the same cylinder in downward 
motion. This asymmetry is primarily due to geometric nonlinearity, because the 
cylinder becomes more efficient in generating surface motion the closer it gets to the 
surface. 

Figure 7 (a-c) shows the second-order surface elevation due to geometric nonlinearity 
(7.3), for the same values of 6 and a as in figure 6. Their amplitudes are generally much 
larger than those due to the hydrodynamic nonlinearity at the free surface ((7.1) and 
figure 6), and they tend much more slowly to zero in the far field. 

Figure 8 (a-c) shows the total second-order surface elevation, as the sum of the 
curves in figures 6 and 7. We see that most of the curves in figure 8 are fairly close to 
the corresponding curves in figure 7. However, for vertical motion (a = an) there are 
interesting peculiarities: at 6 = 0.8 there is a marked surface dip at x = 0 for the total 
elevation; at 6 = 0.98 there is a region (-0.25 < x < 0.25) where the total surface 
elevation is almost zero, but in the subintervals 0.15 < 1x1 < 0.25 the contributions 
(7.1) and (7.3) tend to cancel each other instead of being zero separately. The region 
of zero second-order elevation represents a thin layer above the cylinder that passively 
follows its upward motion with unit velocity, see figure 4(a). 
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FIGURE 8. The total second-order surface elevation v 2  as a function of x. It is the sum of (7.1) and 
(7.3), as displayed in figures 6 and 7. Dash-dot curves: E = 0.5. Dashed curves: E = 0.8. Solid curves: 
E = 0.98. (a) Vertical motion (a = in). (b) Horizontal motion (a = 0). (c) Oblique motion (a = an). 
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8. The zeroth-order hydrodynamic force 
For a discussion of force calculations within the realm of small-time expansions, we 

refer to Miloh (1991 a, b). We will now calculate the zeroth-order force, which is a time- 
independent force on the cylinder. This is the dominating force on the cylinder just 
after it has been forced impulsively into motion. The total zeroth-order force for 
constant speed (X, = Y, = 0) can be written (see $3) 

F, = @Wn) + p p e )  + p e o m )  n .  (8.1) 
These three terms are defined in polar coordinates as 

(8.2b) 

( 8 . 2 ~ )  

The zeroth-order force is the sum of three different effects: (i) the dynamic-pressure 
effect (superscript dyn) due to the zeroth-order tangential flow along the cylinder 
contour; (ii) the first-order flow due to the leading-order nonlinear effects of the 
convective acceleration at the free surface (superscript free) ; (iii) the geometric 
nonlinearity in the first-order flow (superscript geom), accounting for the fact that the 
cylinder centre is being displaced out from its initial position at any finite time since the 
start. In Appendix B we have separated out effects (ii) and (iii) by means of the two 
functions and $l. 

In figures 9-11 we display the different force components defined by (8.2), for the 
cases a = 0, an and fn. 

Tyvand & Miloh (1995) derive the following expressions which may only be valid 
asymptotically in the small-cylinder limit : 

F:free)/(ne2) - (+e4) [ - isin 2a +j(cos 2a - 2)], 
F<0geom)/(n~') - e2R, sin a = ;e2 [isin 2a +j( 1 - cos 2a)l. 

(8.3) 
(8.4) 

In our asymptotic small-cylinder theory (Tyvand & Miloh 1995) the force component 
due to the dynamic-pressure effect vanishes, because the flow surrounding the cylinder 
is considered as locally uniform. But now its exact formula is found in a way similar 
to that described in $6. This dynamic-pressure force points in the vertical direction: 

FLdYn) = jn tanh Q 
co 

n e-2nco tanh ncO[2n tanh n& 
n=l 

- ((n - 1) eco tanh (n - 1) c0 + (n + 1) ec5o tanh (n + 1) co) cosh Q]. (8.5) 

This exact dynamic-pressure force divided by the dimensionless displaced fluid mass 
(m2) is displayed in figure 9, where the Fourier series (8.5) has been truncated to 100 
terms and summed by MATHEMATICA. Its magnitude grows monotonically with the 
cylinder radius, and tends to a value about 0.08 as E +  1. The dynamic-pressure force 
points downwards. This is again physically plausible : the initial streamlines will be 
closer together below the cylinder than above it, since the flow generated by the 
cylinder is vertical at the free surface. We note that the zeroth-order dynamic-pressure 
force is independent of the direction of the initial motion. For small E we find 
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FIGURE 9. Dynamic-pressure force F6","") divided by the displaced fluid mass (712 )  and given as a 
function of the radius B. The exact Fourier series (8.5) is truncated to 100 terms. 

numerically that the dynamic-pressure force (8.5) is of order e4. Since this is the leading 
order of magnitude for the largest contributions to the zeroth-order force, we see that 
our small-cylinder asymptotic expansion (Tyvand & Miloh 1995) can never be fully 
consistent with respect to the total zeroth-order force. 

More generally, a theory for the steady force like that of Greenhow (1988, equation 
l), based on the time derivative of the momentum (with a zero-potential free-surface 
condition) must always be conceptually incorrect. But its errors are small for purely 
vertical motion of a small cylinder, when the only mistake arises from the small 
dynamic-pressure force (8.5). The errors of such a theory will be much more serious for 
larger cylinders, especially if the motion has a horizontal component. 

The force contribution due to the leading nonlinear free-surface effect is found to be 

x [e(n+Q"+")50H(-n-qm-k)(isin(q+ 1)a+jcos(q+ 1)a) 
+e-("+*"+k)'~H(n+qm+k)(isin(q+ 1)a-jcos(q+ 1)a)l. (8.6) 

The precise definition (3.2) is crucial for the correct evaluation of (8.6). In figure 10 we 
show these force components Figee) (solid curves) and F i p e )  (dashed curves) as 
functions of the cylinder radius e for vertical, horizontal and oblique motion (a = kn, 
0, in). In the diagrams the force components have been divided by ($re6), in order to 
allow a direct comparison with the asymptotic formula (8.3) valid in the small-cylinder 
limit. In all cases we find good agreement with the small-cylinder limit when E < 0.1. 
The horizontal force component exists only when the motion is oblique, and its 
magnitude is smaller than the corresponding vertical force. 

The zeroth-order force due to the geometric nonlinearity is split into two 
contributions : * 

(8.7) Flpeom)  = p e o m )  + F ( g e o m ) .  
0 0 
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FIGURE 10. Force components F A T )  (solid curves) and F b r )  (dashed curves) divided by (ne6/4) and 
given as functions of the radius E .  The exact Fourier series (8.6) is truncated to 20 terms in both n and 
m. (a) Vertical motion (a = in). (b) Horizontal motion (a  = 0). ( c )  Oblique motion (a  = an). 

* 
These are defined by means of the potentials and derived in Appendix B 

J -n J -n 
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The first of these can be rewritten in bipolar coordinates as 

.k m m  
F l p e o m )  = - 4 tanh 5, C C ( - l)n+mnm e-(n+m) Co 

n=1 m=l 

x isin a (( 1 + cosh c0 cos 0) sin (no + a) 
+ sinh co sin Bcos (no + a) tanh c0) sin me dB 

+jcosa (sinh<osinBsin(nO+a) 

- (1 + cosh <,, cos 0)  cos (no + a) tanh nQ) cos mB dB1. 

[ .  SI, 
SI, 

1 

Here the Fourier expansions (A2) and (A 3 )  have been used. Carrying 
integration finally leads to the formula 

(8.9) 

out the 

Sr 
Flpeom) = - 47c tanh c0 sinh c0 cos a (i sin a + j  cos a) 

m 

x C n eP2"Co(tanh nc0 - 1) (n sinh co - cosh co). (8.10) 
n=1 

This force contribution makes an angle with the velocity R, (i.e. gives a lift component) 
except in the cases a = and a = $7~. The second force contribution is found to be 

-2- n (n+l)e-Ca 1. (8.11) [ co:yn!$ Q cosh nQ + cosh (n  + 1) lo 

Equations (8.10)-(8.11) are summed to obtain the zeroth-order force due to geometric 
nonlinearity (8.7). In figure 11 we show the force components Fgom) (solid curves) and 
Pgeom) (dashed curves) as functions of the cylinder radius e for vertical, horizontal and 
oblique motion (a = in, 0, in). In the diagrams these force components have been 
divided by (fne'), in order to allow a direct comparison with (8.4). It was hoped that 
this asymptotic formula (derived by Tyvand & Miloh 1995) would be valid in the small- 
cylinder limit. But the comparisons of these curves with (8.4) fail, even though it is 
confirmed that the force components are of order e4 when e is small. 

However, we have performed a separate comparison of (8.1 1) with (8.4), and found 
very good agreement (less than 1'30 deviation) when e < 0.1. This leads us to the 
conclusion that the contribution (8.1 1) is consistent with our small-cylinder assumption 
of locally uniform flow. On the other hand, the contribution (8.10) is incompatible with 
our small-cylinder approximation, no matter how small the cylinder is. So there are 
two qualitatively different force effects due to geometric nonlinearity. (i) The first, 
obvious effect is that the cylinder carries the (modified) initial flow field with it into a 
new location. This is the field given by zero-potential condition at the free surface and 
by the forced motion at the cylinder contour. It makes a small cylinder behave like a 

oy. 
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FIGURE 1 1. Force components F C m )  (solid curves) and F!$;m) (dashed curves) divided by (xe4/2) and 
given as functions of the radius E .  The exact Fourier series (8.10) and (8.11) are truncated to 20 terms. 
(a) Vertical motion (a = in). (b) Horizontal motion (a  = 0). (c)  Oblique motion (a = $). 

dipole in a uniform flow. Its force is given by (8.1 1). (ii) The second (less obvious) effect 
is that the cylinder penetrates a finite distance into the initial field (that it has been 
continuously producing since time zero, to generate the first-order elevation). With our 
small-time extrapolation from time zero, the initial field continues to operate, even 
after the cylinder has moved a finite distance away from its initial location. The force 
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due to this interaction between the initial field and the displaced cylinder is represented 
by (8.10). This cannot be captured in our small-cylinder limit. But we note that (8.10) 
is zero for vertical motion: this is the only case where the inconsistency of the small- 
cylinder theory is due entirely to the dynamic-pressure force (8.5). 

The horizontal force Feom) exists only when the motion is oblique. Usually this 
horizontal force is smaller than the corresponding vertical force. But in our displayed 
case a = an the horizontal and vertical forces due to geometric nonlinearity are exactly 
equal. 

Generally all zeroth-order force components have magnitudes increasing mon- 
otonically with the cylinder radius. The vertical forces are usually more important then 
the horizontal forces, which exist only when the motion is oblique. We note that the 
vertical force due to geometric nonlinearity is positive when the motion is vertical 
(a = :n), while it is negative in the two other displayed cases (a  = 0, fn). 

Through our choice of dimensionless quantities, all zeroth-order forces are 
proportional to the square of the cylinder velocity. The net zeroth-order force will 
always point upwards when the cylinder moves vertically. Generally the zeroth-order 
force is conserved under a reversal of the direction of motion: 

&(a + n) = &(a). (8.12) 

These conclusions concerning the direction and magnitude of the zeroth-order force 
agree with those stated by Greenhow (1988). However, his analysis is rather crude, and 
it is restricted to vertical motion only. When the cylinder moves horizontally, there will 
be a net downward zeroth-order force (negative lift). 

9. The leading-order gravitational effects 
In the case of a constant velocity, the leading gravitational effects enter into our 

perturbation scheme through the second-order potential. From (3.10) the free-surface 
condition for the leading-order gravitational contribution to the potential is 

In addition we have the condition (3.21b) of zero normal derivative at the cylinder 
contour. From formula (5.7) it is now straightforward to find the leading-order 
gravity-dependent potential : 

1 (- 1)’k epncO sin ((n - 1) O+ a)  cosh (n- 1) ([- c0) 

sin(nO+a)coshn(c-co) sin((n+ l)O+a)cosh(n+ l)(<-co) . (9.2) 

From the kinematic condition (3.14) we can now determine the leading-order 
gravitational effect on the surface elevation : 

cosh (n - 1) c0 

+ 1 
[ z @y = ~ 

2Fr2 cosh nc0 

cosh nco cosh (n + 1) c0 +2 

cos2(@) 
3 Fr2 tanh co - - C (- ‘Inn e-nco [(n - 1) sin ((n - 1) O+ a) tanh (n - 1) Q 

cosh nc0 

+ 2n sin (no+ a)  tanh nco + (n  + 1) sin ((n + 1) O+ a) tanh (n + 1) 61. (9.3) 
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FIGURE 12. Third-order surface elevation due to gravitational effects, for three choices of 
dimensionless radius: E = 0.5 (dash-dot curves, smallest amplitude), E = 0.8 (dashed curves, medium 
amplitude), E = 0.98 (solid curves, largest amplitude). (a) Vertical motion (a = in.). (b) Horizontal 
motion (a = 0). 

Figure 12 shows a plot of (Fr2 yp')) as a function of x for the same choices of radii 
as in figure 4: e = 0.5,0.8 and 0.98. The exact Fourier series solution (9.3) is truncated 
to 40 terms. Figure 12(a) represents a vertical motion (a = ix). When e < 0.8 the 
behaviour is as expected: there is a trough around x = 0, representing a radiation of 
wave energy out from the bulk of the first-order surface heap. Since this third-order 
elevation tends rather quickly to zero in the far field, there must be a positive surface 
elevation near x = 1, so as to satisfy the condition (3.28) of mass conservation. When 
the radius e exceeds 0.8, a new feature emerges: the minimum surface elevation is 
displaced out from x = 0, where a local maximum tends to build up, although with a 
negative surface elevation. In order to further understand this, we consider values of 
e close to 1, where there is a dynamically passive layer of fluid around x = 0. This layer 
is passive because it is almost at rest relative to the cylinder, following its forced 
upward motion with the unit velocity. In this passive layer there will be no 
gravitational effects at small times, as is clearly seen in the case e = 0.98 in figure 12(a). 
The local maximum emerging at x = 0 as e exceeds 0.8 can thus be interpreted as the 
beginning transition to this passive layer configuration. In all three cases displayed, the 
third-order minimum is located near the point where the first-order surface slope 
reaches a maximum. So the leading-order gravitational effect may possibly reduce the 
tendency of surface breaking. 

Figure 12(b) represents the case of horizontal motion (a = 0). Here this third-order 
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do. (9.4) 
isinh c0 sin 0 +j( 1 + cosh Q cos 8) 

(cosh go + cos 1 9 ) ~  
= 2 tanh co @iFr)(Co,  8) 

Here we have performed a transformation from polar coordinates to bipolar 
coordinates, and introduced Cartesian unit vectors. By inserting the potential (9.2) and 
the Fourier expansions (A 2) and (A 3) ,  we finally obtain the formula 

This leading-order gravitational force points in the direction opposite to the initial 
velocity. In figure 13 we show this first-order gravitational force divided by the infinite- 
fluid added mass (xc2),  as a function of the radius e (lower solid curve). It is compared 
with a dashed curve representing the asymptotic formula (Tyvand & Miloh 1995, 
equation (5.13)) which is valid as c + 0 : 

FlFr)/(xe2)  = - (t.'/Fr') R,. (9.6) 
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For comparison we also redraw the initial impulse force from figure 5, (6.5). This is the 
lower curve in figure 13, with the accompanying dashed curve representing two terms 
in the asymptotic expansion (6.6). The series expansions have been truncated to 100 
terms. 

When e is of order 0.5 or smaller, the agreement with the one-term asymptotic 
formulae is acceptable and about the same in both cases displayed in figure 13. But 
there is an interesting difference between the two cases for larger e: the tangent of the 
curve for the first-order force becomes horizontal as e - f  1, whereas the curve for the 
added momentum approaches e = 1 with a finite slope. An explanation is that the thin, 
gravitationally passive layer above a cylinder with radius close to 1 does not contribute 
to the added mass in the gravity-dependent second-order flow. At zeroth order, 
however, this layer has a large velocity (close to 1 for purely vertical motion), so it does 
contribute to the added mass with the zeroth-order flow. 

The leading gravitational effects on the surface elevation as well as the hydrodynamic 
force are specified by linear theory. So the principle of superposition is valid for the 
gravitational surface elevation and force when the cylinder performs an oblique 
motion. We display no results for oblique motion, since they are given by linear 
combinations of horizontal and vertical motion. 

10. The case of a constant acceleration from rest 
In our above exact theory ($0 5-9) we have taken X ,  = yZ = 0, thus assuming that the 

forced motion has no acceleration. In this section we will consider the opposite case, 
where X,, yZ or both are non-zero, while there is no initial velocity: 

* 
R, = 0. (10.1) 

We will try to deduce the results for a cylinder in constant acceleration from the above 
analysis with constant speed. In order to clarify the necessary transformations we have 
introduced the superscript c) for the case of constant acceleration, whereas the case 
of constant speed will be left without any superscript. 

Redefining a as the angle (measured counter-clockwise) between the initial 
acceleration vector and the x-axis, the dimensionless acceleration of the cylinder is 
defined as 

d2R .. 
__ = 2R, = icosa+jsinol, 
dt2 

(10.2) 

which is analogous to (6.4) for the case of a constant velocity. Thus, the absolute value 
of the dimensionless acceleration is 1 according to our definition. This means that the 
dimensional acceleration ( A )  is given by ( W / D ) ,  i.e. 

w= (AD)”,. (10.3) 

The Froude number (2.1) is thus defined as an acceleration ratio: 

Fr = (A/g)l”. (10.4) 

From now on, the meaning of CL will alternate between the definitions (6.4) and 
(10.2), i.e. a denotes in general the angle between the direction of forced motion and 
the x-axis. Then we may write 

R2 = iR,. (10.5) 

By comparing the boundary conditions (3.19) and (3.20) we immediately find - 
0, = Q0 (10.6) 



92 P. A. Tyvand and T. Miloh 

because the first-order potential now vanishes on the free surface. From the kinematic 
conditions (3.12) and (3.13) we then get 

i ,  = 0, (10.7) 

7j2 = is,. (10.8) 

By comparing (6.1) and (8.26) we find the zeroth-order force - 
F, = FPl. (10.9) 

This has already been displayed in figure 5 ,  as a function of the inverse radius. In this 
case the added mass retains its usual link to the acceleration (instead of momentum), 
and it is also given by Greenhow & Li (1987, figure 2) for zero potential at  the free 
surface. 

According to conditions (3.10) and (3.21 a) there are no inhomogeneous boundary 
conditions for the second-order potential, which will be zero : 

a 

CP2 = 0. (10.10) 

7^j3 = 0. (10.1 1) 

So there is no third-order elevation in the case of constant acceleration : 

The leading-order effects of convective acceleration and geometric nonlinearity join the 
leading gravitational effect in the third-order potential: 

~6~ = i(6#j1 + llrl + #jiFr)). (10.12) 

This gives the formula for the full fourth-order surface elevations : 

1 Wl 1 Wl 7j4(x) = --(x, 0) +-- (x, 0) ++p (x). 
2 ay 12 ay (10.13) 

Here we benefit from the splitting of the potential introduced in (3.23). 

first-order force vanishes : - 

The second-order force is defined by the following integral: 

We close this section by calculating higher-order forces. It is easily shown that the 

Fl = 0. (1 0.14) 

( 10.1 5 )  

This quantity can be expressed by force components derived in the two preceding 
sections : 

3 2 -  - F Y Y ~ )  + 6~;free) + F f e o m t  + i ~ ( F r ) .  2 1  (10.16) 

We note that the free-surface nonlinearity is relatively much more important for 
constant acceleration than for constant speed. We also note that the leading 
gravitational effects with constant acceleration enter the problem to the same order as 
the leading nonlinear effects. 

11. Summary and discussion 
A small-time expansion has been performed for the unsteady nonlinear free-surface 

flow generated by the forced motion of a circular cylinder impulsively started from rest 
at time zero. The forced motion is either with constant velocity or constant 
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acceleration, and our expansion has been taken far enough to include the leading-order 
gravitational effects. The surface elevation and the hydrodynamic force are calculated 
to each order in the expansion. 

Both the initial force impulse and the leading gravitational force are vectors pointing 
in a direction opposite to the motion of the cylinder. Thus reversing the direction of 
motion means reversing these forces. As a contrast, the steady (zeroth-order) force is 
unchanged when the direction of motion is reversed. The steady force is proportional 
to the square of the velocity, and it is purely vertical both for horizontal and vertical 
motion. Only in the case of oblique motion does a horizontal steady force component 
arise. It can be interpreted as being due to nonlinear interaction between the zeroth- 
order flows due to horizontal and vertical motion of the cylinder. 

From the expressions for the force one may easily calculate the work exerted by the 
cylinder on the surrounding fluid. The work may then be given as a power series in 
time. We mention one obvious result: the zeroth-order work is given by the initial 
kinetic energy of the fluid, and is equal to the added mass times half the squared initial 
velocity. 

Only one of the present results has been derived in the literature: the initial force 
impulse experienced by the cylinder during the impulsive start. It was calculated by 
Venkatesan (1985) and Greenhow & Li (1987). In a recent analytical work, Wu (1993) 
has taken into account the effects of what we call ‘geometric nonlinearity’ at the 
cylinder contour, when the cylinder performs forced oscillations. He linearized the free- 
surface condition. Our results confirm that the geometric nonlinearity usually 
dominates over the free-surface nonlinearity, especially for small cylinders. In analogy 
with Wu, we find that geometric nonlinearity gives rise to an important steady force, 
although our theory permits it to be traced for a short time only. 

We find exact solutions to each order, by utilizing Fourier expansions in bipolar 
coordinates. As an independent check of these solutions, our accompanying paper 
(Tyvand & Miloh 1995) gives a comparison with the much simpler small-cylinder limit 
solutions based on a dipole approximation for the zeroth-order flow. There is good 
agreement in the surface elevation when the ratio of cylinder radius to submergence 
depth is 0.3 or smaller. However, two zeroth-order force contributions are beyond the 
reach of our small-cylinder theory: both the force due to the dynamic-pressure effect 
and the force due to geometric nonlinearity at the cylinder contour are inconsistent 
with our small-cylinder theory, which assumes uniform local flow around the cylinder. 
Their contributions to the zeroth-order force cannot be neglected, no matter how small 
the cylinder is. These inconsistencies of our small-cylinder theory (Tyvand & Miloh 
1995) provoke an improved physical understanding of the present general results for 
the hydrodynamic force. Although our small-cylinder assumption of uniform flow 
surrounding the cylinder is not consistent with respect to the zeroth-order force, it 
works for the singular impulsive force and for the first-order gravitational force. 

Haussling & Coleman (1979) and Telste (1987) have studied a hybrid problem, where 
the cylinder is first accelerated and later kept at constant velocity. Only the stage of 
acceleration can be compared with our analytical theory. Figure 16 by Telste (1987) 
revealed an early quadratic growth with time for the surface elevation just above a 
cylinder (accelerated vertically). Moreover, the early gravitational effect on the 
elevation was the fourth power of time. Both these results support our present theory 
qualitatively (0 lo), but Telste (1987) did not give enough documentation to provide a 
full quantitative comparison. 

A striking effect has been identified for the surface elevation of a cylinder in vertical 
motion close to the free surface: the surface above the cylinder will often attain an 
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FIGURE 14(a,b). For caption see p. 97. 

almost circular shape, according to the numerical simulations by Telste (1987), 
Greenhow (1988) and Terent’ev (1991), as well as the experiments by Greenhow & Lin 
(1983). When the Froude number is large, this surface shape will have its centre almost 
in the (instantaneous) cylinder centre, so that the radial thickness of the fluid layer 
above the cylinder will be almost uniform. 

We are able to identify this trend of almost uniform radial thickness of the fluid layer 
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FIGURE 14(e,f). For caption see facing page. 

above a large cylinder in rapid upward motion (infinite Froude number). In figure 14 
we consider the cylinder radius B = 0.8 and display the full surface elevation (according 
to second-order theory) above the cylinder at dimensionless times t = 0.25 and 0.5. The 
latter value is t is as large as we can possibly allow with neglect of terms of third 
and higher orders, but it is useful in order to show clearly the nonlinear effects. Figure 
14(a, b) shows the case of upward motion. We note that the second-order elevation 
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FIGURE 14. Snapshots of free surface above a large cylinder ( E  = 0.8) in rapid motion with constant 
speed. Solid curves : total surface elevation according to second-order theory ( ~ ( x ,  t )  = vl t + T~ tz). 
Dashed curves : surface elevation according to first-order theory. Thick solid circle shows current 
position and thin circle shows initial position of the cylinder contour. Upward motion (a = in): (a) 
t = 0.25, (b) t = 0.5. Downwardmotion(a = -in): (c)  t = 0.5. Horizontalmotion(a = 0) :  ( d )  t = 0.25, 
(e) t = 0.5. Oblique motion (a = in): (f) t = 0.25, (g )  t = 0.5. 

plays a very important role in generating the constant radial thickness, and it shifts 
the inflection point of the free surface to larger values of 1x1. Figure 14(b) confirms 
the observed tendency of constant radial thickness and identifies it as a nonlinear 
phenomenon. Our theory cannot here be compared quantitatively with published 
numerical results, because all displayed simulations refer to times greater than one, 
where our theory is not reliable. 

Figure 14(c) shows that a relatively narrow trough will evolve above a cylinder in 
forced downward motion. Figure 14(d-g) shows similar snapshots of the free surface 
for horizontal and oblique motion. Greenhow (1993, figure 5) shows a case of 
horizontal motion that can be compared with our theory at small times (with E = OS), 
and the agreement is reasonable. 

A complementary way to define the present problem is to prescribe the net force on 
the cylinder as a function of time, and compute its resulting motion and the surface 
elevation. The solution of such a problem can be achieved from a reinterpretation of 
the present results. For example, let us assume that the cylinder is suddenly put into 
motion by an initial impulsive ‘kick’, and is afterwards left to move freely (assuming 
neutral buoyancy). 

(i) If the cylinder is given an upward motion, it will of course continue to move 
upwards, but it will experience three vertical zeroth-order forces : a downward 
dynamic-pressure force, a downward force due to free-surface nonlinearity, and an 
upward force due to geometric nonlinearity. The net zeroth-order force always points 
upwards. Thus a cylinder of small or moderate size will get an early acceleration 
upwards, until gravity comes into play and retards the upward motion. 



98 P. A. Tyvand and T. Miloh 

(ii) If the cylinder is given a horizontal motion, it will continue to move freely with 
constant speed horizontally, until gravity comes into play and retards its horizontal 
motion. However, the cylinder will be accelerated downwards by the zeroth-order 
force. Thus the early path of the cylinder is in this case a parabola, starting out 
horizontally and curving downwards. 

E. E. Leirgul is acknowledged for drawing figures 1-3 and 14. The referees are 
thanked for valuable comments. 

Appendix A. Fourier expansion of the zeroth-order potential 

expansion of the following factor (Morse & Feshbach 1953, p. 1215): 
In order to find the exact solution for the zeroth-order potential, we need the Fourier 

This formula requires Q positive, which is always true in this paper. By taking the 
derivative with respect to 6' we get 

00 sinh c0 sin 6' 
(cosh co + cos 6')2 = 2 C (- 

n=l 
ecn50 sin no. 

The derivative of (A 1) with respect to co gives 

The Fourier expansion of the boundary condition at the cylinder can then be written 
as 

Q 

??! (Q, 6') = 2 sin a: tanh co 2 ( - l)% e-ncOcos n6' 
a5 n = l  

00 

+ 2 cos ct tanh 5, C (- l)% ePn50 sin no. (A 4) 
n=l 

Appendix B. The boundary-value problem for the first-order potential 
The first-order potential is decomposed into two components : 

@1= #1++1. (B 1) 
The first term is generated by the inhomogeneity at the free surface (due to the 
convective acceleration) with a zero normal derivative at the cylinder contour. The 
second term is generated by the inhomogeneity at the cylinder contour (geometric 
nonlinearity), with a homogenous condition at the free surface. 

Let us first Fourier expand the inhomogeneous boundary conditions. From (3.9) and 
(5.5) we get 

1 " "  
16n=1m=1 

#1(0, 6') = - C C (- l)n+mnrn e-(n+m)cO sech nco sech mc0 

2 1 

x C. (24-9k2+k4) C qcos((n+qm+k)O+(q+ 1)a). (B 2) 
k=-2 q=-1 
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The condition (3.20) in polar coordinates is (when X2 = yZ = 0) 

99 

By definition, we have the homogeneous boundary conditions (written in bipolar 
coordinates) : 

?kl(O, 6)  = 0. (B 5 )  

the harmonic function that satisfies the boundary conditions (B 2) and (B 4) as well as 
the far-field condition (3.5) is given by 

1 " "  2 

q51(5, 6 )  = - C C (- l)"+%m e-(n+m)co sech n5, sech mC0 C (24 - 9k2 + k4) 
16 n=l m=l k=-2 

It proves convenient to split the function further into two contributions: 

* 
w1 = ? k 1 + 3 1 *  

A qualitative definition of these functions is that the first one takes care of the 
inhomogeneous condition at the cylinder contour, while the second one takes care of 
the zero-potential condition at the free surface. Precisely, we pick the first function by 
formally integrating the boundary condition (B 3) in the normal (radial) direction : 

This may be perceived as an analytic continuation over the fluid domain of an 
inhomogeneity that is only defined at the boundary. It is not a recommended procedure 
for solving a boundary-value problem, but makes sense here because Laplace's 
equation and the far-field condition are satisfied. The second function is now 
determined by the free-surface condition : 

* 
3 1 ( ~  = 0) = - ?k1(y = 0) = rl sin a. 

This second function obeys zero normal derivative at the cylinder contour 

-(e, a31 0) = 0. 
i3R 

The first function is known already from (B 8): 

* m0 cos (0 +a) a@, 
i3R R a@'  $,(R,O) = -sin(@+a)-- 
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Here we will introduce bipolar coordinates only as far as they are needed to perform 
the differentiations of the Fourier series (5.4): 

* a@ cos (0 + m0 do 
$1(<,0) = s in (O+a)h - 'A-  ~- a< R a0 d 0  

m (- 1)"n ,'-% 
=2x [sin (0 +a) (cosh <+ cos 0) sin (no + a) cosh n6 

n=l cosh nc0 

- (dO/d@) tanh Q R-l cos (0 + a)  cos (n0 + a) sinh n g .  (B 12) 

In the main text this formula will be applied only to a force calculation. We then need 
the value of this first function at the cylinder contour only: 

* 02 $'(c0, 0) = 2 C (- l)".n ecn$ 
n=l 

x [sin (0 +a) (cosh c0 + cos 0) sin (no + a) 

-(sin 0/sin 0) sinh c0 cos (0 +a) cos (no  + a)  tanh nQ]. 

At this stage we eliminate the angle 0 by (4.9) and get 

Sr a2 

+l (c0, 0) = 2 C (- l)".n e-%<o 
n=1 

x [(sinh c0 sin 0cos a + (1 + cosh lo cos 0) sin a) sin (n0 + a)  

+ (sinh co sin 0 sin a - (1 + cosh c0 cos 0) cos a) cos (n0 + a)  tanh n d ] .  (B 14) 

The second function is proportional to the second-order gravity-dependent potential 
(9.2), derived in the main text: 

sin ((n - 1) 0 +a) cosh (n - 1) (5- c0) 
cash (n - 1) c0 $,(<, 0) = -sin a C. 

sin (no + a) cosh n(<- c0) sin ( ( n  + 1) 0 + a) cosh (n + 1) (6- c,,) . 
(B 5 )  1 + 

cosh nco cash (n + 1) C0 + 2  
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